Cirrhotic Cardiomyopathy

Marc Klapholz, MD, MBA, FACC, FAHA
Chair, Department of Medicine
Rutgers New Jersey Medical School
March 17, 2018

Cardiac Output at rest in Laennec’s cirrhosis

Cardiac Syndromes in Liver Disease
I. Portopulmonary Arterial Hypertension
II. Hepatopulmonary Syndrome
III. Cirrhotic Cardiomyopathy

Porto-Pulmonary Arterial Hypertension

Porto-Pulmonary Arterial Hypertension
Hepatopulmonary Syndrome

Hyperdynamic – High Output

![Heart Images]

World Congress of Gastroenterology 2005

Definition of Cirrhotic Cardiomyopathy

Cardiac dysfunction in patients with cirrhosis characterized by impaired contractile responsiveness to stress and/or altered diastolic relaxation with electrophysiological abnormalities in the absence of other known cardiac disease.

Dobutamine Stress Echo

Baseline EKG

Chronotropic Incompetence

At peak dobutamine dose of 50 ug/kg/min
Diagnostic criteria

• Diastolic dysfunction
 – E/A ratio < 1.0 (age-corrected)
 – Prolonged deceleration time (>200 ms)
 – Prolonged isovolumetric relaxation time (>80 ms)

Additional and Supporting Criteria

• Abnormal chronotropic response
• Electromechanical uncoupling/dysynchrony
• Prolonged QTc interval
• Enlarged left atrium
• Increased myocardial mass
• Increased BNP and pro-BNP
• Increased troponin I

Cirrhotic Cardiomyopathy

• Limited data regarding true prevalence of cirrhotic cardiomyopathy because of near normal cardiac function at rest unless exposed to stress (vasodilation, pharmacologic or physiologic stress; bacterial infection, tips or transplantation)
• ~50% of patient undergoing OLT develop some signs of cardiac dysfunction
• Majority of patients with Child-Pugh class B and C have at least one feature of CCM i.e. QT prolongation

Concentric LVH

Algorithm for Diagnosis of Cirrhotic Cardiomyopathy

Is Cirrhotic Cardiomyopathy Intrinsic to Liver Disease?

• Other explanations for cardiac dysfunction
 – HTN (can be masked in advanced liver dysfunction)
 – Alcoholic cardiomyopathy
 – Viral myocarditis
 – Ischemic heart disease
 – Familial or other cardiomyopathies as in general population
 – Hemodynamic adaptation to low SVR, high output (HPS)
 – Response to pulmonary vasoconstrictors (PPH)
Experimental Cirrhotic Cardiomyopathy

- Down regulation of β receptors; impaired β adrenergic signaling and decreased cardiac contractility
 - Constant catecholaminergic stimulation
 - Decrease in cAMP production (impairment in cardiac contractility)
- Electrophysiological abnormalities
 - Abnormalities in K channels leading to QT prolongation
 - Abnormalities in SR leading to slower Ca recycling and slowed relaxation and increased ventricular stiffness
 - Chronotropic incompetence

Autonomic Dysfunction

- [Image of cardiac imaging with text: Camera imaging with mIBG reflects noradrenaline concentrations, storage, release and uptake]

QT interval prolongation

- 107 patients with cirrhosis and 42 controls examined.
- Prevalence of abnormal QTc:
- In control group QTc was longer in females, but no gender difference noted in patients

![Graph showing QT interval prolongation in cirrhosis and controls]

Myocardial late gadolinium enhancement cardiovascular magnetic resonance in patients with cirrhosis

- 20 consecutive patients with ELD with CMR scan
 - All had hyperdynamic LV
 - All showed evidence of LGE c/fibrosis – but to a greater extent in alcoholic liver/cardiac disease
 - Patterns similar to acute myocarditis
 - MELD score did not predict severity of LGE
 - No association between severity of LGE and EF.
 - Role in diagnosing, or prognosticating in ELD is unclear

LV diastolic dysfunction is an independent predictor of mortality in patients who underwent liver transplantation.

- [Graph showing survival rates post-LT]

Future Challenges

- To better identify latent cardiac dysfunction – systolic and diastolic as they appear to affect the clinical course in both the pre-OLT and post-OLT periods
- To differentiate reversible from irreversible changes in myocardial structure and function that occurs in association with liver disease - i.e. when is OLT curative
- To develop appropriate treatments for both latent and overt myocardial abnormalities that are present in association with liver disease