Highlights of Skin Disease Education Foundation’s 42nd Annual Hawaii Dermatology Seminar

Learning Objectives
By reading and studying this supplement, participants should be better able to:
• Assess the safety of tumor necrosis factor inhibitors in the treatment of psoriasis
• Compare and contrast the interleukin (IL)-17 antagonists used to treat psoriasis
• Discuss the role and use of topical therapies in the management of psoriasis, including newer therapies
• Detect adverse events during isotretinoin therapy for acne
• Evaluate current and emerging therapies for acne and rosacea
• Describe topical, procedural, and investigational treatments for cellulite
• Demonstrate familiarity with procedures for safe injection of facial fillers, and preventing and managing vascular occlusion

Disclosure Declarations
Individuals in a position to control the content of this educational activity are required to disclose: 1) the existence of any relevant financial relationship with any entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients with the exemption of non-profit or government organizations and non-health care related companies, within the past 12 months; and 2) the identification of a commercial product/device that is unlabeled for use or an investigational use of a product/device not yet approved.

Faculty
Hilary E. Baldwin, MD, Speakers Bureau: Allergan; Galderma; Valeant. Contracted Research: Dermira; Galderma; Novan; Valeant.
Linda F. Stein Gold, MD, Speakers Bureau: Allergan; Celgene; Galderma; Leo; Novartis; Pfizer; Valeant. Consultant: AbbVie; Allergan; Celgene; Galderma; Leo; Medimetrix; Novartis; Pfizer; Promius; Valeant. Fees for Non-CME Services Received Directly from a Commercial Interest or its Agent: AbbVie; Allergan; Celgene; Dermina; Galderma; La Roche-Posay; Leo; Medimetrix; Novan; Novartis; Pfizer; Promius; Sebela; Valeant. Contracted Research: Allergan; Aquia; Dermina; Galderma; Leo; Pfizer; Valeant.
Kenneth B. Gordon, MD, Consultant: AbbVie; Amgen; Boehringer Ingelheim; Celgene; Dermina; Eli Lilly; Janssen; Novartis; Pfizer. Contracted Research: AbbVie; Boehringer Ingelheim; Celgene; Janssen; Novartis.
Jeremy B. Green, MD, Speakers Bureau: Allergan; Cutera; Galderma; Merz; Consultant: Allergan; Endo; Galderma; Merz. Contracted Research: Allergan; BioPharmX; Brikell Biotech; Cutera; Galderma; Merz; Revance; Sienna. Stocks/Stock Options/Ownership Interest: Candesant; Illustri.
Craig L. Leonardi, MD, Speakers Bureau: AbbVie; Celgene; Eli Lilly; Novartis. Consultant: AbbVie; Amgen; Boehringer Ingelheim; Dermina; Eli Lilly; Janssen; Leo; Pfizer; Sandoz; UCB. Contracted Research: Actavis; AbbVie; Amgen; Boehringer Ingelheim; Celgene; Colcicuith; Coherus; Corrona; Dermina; Eli Lilly; Galderma; Glennmark; Janssen; Leo; Merck; Novartis; Novoletta; Pfizer; Sandoz; Szeiefel; Wyeth.
Robert D. Sengelmann, MD, Speakers Bureau: Merz. Consultant: Allergan; Castle; Merz.

University of Louisville CME & PD Advisory Board and Staff Disclosures: The CME & PD Advisory Board and Staff have nothing to disclose.

CME/CE Reviewer: Courtney R. Schodt, MD, Assistant Professor of Medicine, Chief of Dermatology, Robley Rex Veterans Affairs Medical Center, and Director, Dermatology Residency Program, University of Louisville School of Medicine, Louisville, Kentucky, has nothing to disclose.

The Postgraduate Institute of Medicine planners and managers have nothing to disclose.

Global Academy for Medical Education Staff: Eileen A. McCaffrey, MA; Shirley V. Jones, MBA; Sylvia H. Reitman, MBA, DipEd; and Ron Schaumburg have nothing to disclose.

Off-Label/Investigational Use Disclosure
This CME/CE activity discusses the off-label use of certain approved medications as well as data from clinical trials on investigational agents. Such material is identified within the text of the articles.

This continuing medical education (CME/CE) supplement was developed from presentations of Skin Disease Education Foundation’s 42nd Annual Hawaii Dermatology Seminar®, February 4-9, 2018. The Guest Editors acknowledge the editorial assistance of Global Academy for Medical Education and Eileen A. McCaffrey, MA, medical writer, in the development of this supplement. The manuscript was reviewed and approved by the Guest Editors as well as the Editors of Seminars in Cutaneous Medicine and Surgery. The ideas and opinions expressed in this supplement are those of the Guest Editors and do not necessarily reflect the views of the supporters, Global Academy for Medical Education, University of Louisville, Postgraduate Institute for Medicine, or the Publisher.

Jointly provided by

Ortho Dermatologics, LEO Pharma Inc., Merz North America, Inc., and Galderma Laboratories, L.P.

Supported by independent educational grants from

Ortho Dermatologics, LEO Pharma Inc., Merz North America, Inc., and Galderma Laboratories, L.P.

Original Release Date: June 2018 • Expiration Date: June 30, 2020
Estimated Time to Complete Activity: 2.0 hours
Participants should read the activity information, review the activity in its entirety, and complete the online post-test and evaluation. Upon completing this activity as designed and achieving a passing score on the post-test, you will be directed to a Web page that will allow you to receive your certificate of credit via e-mail or you may print it out at that time.

The online post-test and evaluation can be accessed at https://tinyurl.com/HDS18Supp.

Inquiries about CME accreditation may be directed to the University of Louisville Office of Continuing Medical Education & Professional Development (CME & PD) at cmepd@louisville.edu or 502-852-5329.

Accreditation Statements
Physicians: This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of the University of Louisville School of Medicine and Global Academy for Medical Education, LLC. The University of Louisville School of Medicine is accredited by the ACCME to provide continuing education for physicians.

The University of Louisville Office of Continuing Medical Education & Professional Development designates this enduring activity for a maximum of 2.0 AMA PRA Category 1 Credits™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Joint Accreditation Statement: In support of improving patient care, this activity has been planned and implemented by Postgraduate Institute for Medicine and Global Academy for Medical Education. Postgraduate Institute for Medicine is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC) to provide continuing education for the healthcare team.

Continuing Nursing Education: The maximum number of hours awarded for this Continuing Nursing Education activity is 2.0 contact hours. Designated for 1.0 of pharmacotherapy credit for Advanced Practice Nurses.

Target Audience
This journal supplement is intended for dermatologists, nurse practitioners, registered nurses, physician assistants, and other clinicians who practice medical or aesthetic dermatology.

Educational Needs
Increasing knowledge of the pathophysiology of acne, rosacea, and psoriasis has led to new and investigational treatment options with which clinicians need to be familiar. Evidence for the role of interleukin (IL)-17 in psoriasis has led to the introduction of therapies that have revolutionized management of this condition in individuals with moderate or severe disease. Yet, tumor necrosis factors, the first class of biologics introduced for use in psoriasis, remain valuable alternatives for many patients. A growing body of data has underlined the central role of in...
STATEMENT OF PURPOSE

Seminars in Cutaneous Medicine and Surgery presents well-rounded and authoritative discussions of important clinical areas, especially those undergoing rapid change in the specialty. Each issue, under the direction of the Editors and Guest Editors selected because of their expertise in the subject area, includes the most current information on the diagnosis and management of specific disorders of the skin, as well as the application of the latest scientific findings to patient care.

Seminars in Cutaneous Medicine and Surgery (ISSN 1085-5629) is published quarterly by Frontline Medical Communications Inc., 7 Century Drive, Suite 302, Parsippany, NJ 07054-4609. Months of issue are March, June, September, and December. Periodicals postage paid at Parsippany, NJ, and additional mailing offices.

POSTMASTER: Send address changes to Seminars in Cutaneous Medicine and Surgery, Subscription Services, 10255 W Higgins Road, Suite 280, Rosemont, IL 60018-9914.

RECIPIENT: To change your address, contact Subscription Services at 1-800-430-5450.

Editorial correspondence should be addressed to Kenneth A. Arndt, MD, SkinCare Physicians of Chestnut Hill, 1244 Boylston St, Suite 302, Chestnut Hill, MA 02467. Correspondence regarding subscriptions or change of address should be directed to the Seminars in Cutaneous Medicine and Surgery, Subscription Services, 10255 W Higgins Road, Suite 280, Rosemont, IL 60018-9914.

Subscriptions: Individual/Institution, USA: $133.00 p.a.; student, resident, intern, USA: $39.00. Individual, Canada/Mexico: $190.00 p.a.; institution, Canada/Mexico: $162.00 p.a. Individual, all other nations: $243.00 (surface mail), $311.00 (air mail); institution, all other nations: $188. For back issues, call (833) 836-2705 to charge to your credit card. Written requests will be accepted and must be accompanied by check or money order. Send payment and request to Seminars in Cutaneous Medicine and Surgery, Subscription Service, P.O. Box 3000, Denville, NJ 07834-3000 or e-mail custsvc.scms@fulcoinc.com.

Copyright © 2018 by Frontline Medical Communications Inc. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without written permission from the Publisher. Printed in the United States of America.

Licensing/Reprints/Eprints: Wright’s Media, 2407 Timberloch Place, Suite B, The Woodlands, Texas 77386; Tel: 877-652-5295; Fax: 281-419-5712; Email: frontline@wrightsmedia.com.

Advertising representative: Sally Cioci, 7 Century Drive, Suite 302, Parsippany, NJ 07054-4609; Tel: 973-290-8215; Fax: 973-206-9378; Email: scioci@mdedge.com.

Publication of an advertisement in Seminars in Cutaneous Medicine and Surgery does not imply endorsement of its claims by the Editor(s) or Publisher of the journal.

The ideas and opinions expressed in Seminars in Cutaneous Medicine and Surgery do not necessarily reflect those of the Editors or Publisher. Publication of an advertisement or other product mention in Seminars in Cutaneous Medicine and Surgery should not be construed as an endorsement of the product or the manufacturer’s claims. Readers are encouraged to contact the manufacturer with any questions about the features or limitations of the products mentioned. The Publisher does not assume any responsibility for any injury and/or damage to persons or property arising out of or related to any use of the material contained in this periodical. The reader is advised to check the appropriate medical literature and the product information currently provided by the manufacturer of each drug to be administered to verify the dosage, the method and duration of administration, or contraindications. It is the responsibility of the treating physician or other health care professional, relying on independent experience and knowledge of the patient, to determine drug dosages and the best treatment for the patient.

Seminars in Cutaneous Medicine and Surgery is indexed in Index Medicus/MEDLINE.
Highlights of Skin Disease Education Foundation’s 42nd Annual Hawaii Dermatology Seminar®

S76 Optimizing Topical Therapy in Psoriasis
Linda F. Stein Gold, MD

S77 Anti–IL-17 Agents in Moderate to Severe Psoriasis
Craig L. Leonardi, MD

S78 Anti-TNF Therapy for Psoriasis
Kenneth B. Gordon, MD, Craig L. Leonardi, MD

S79 What’s New in Acne
Hilary E. Baldwin, MD

S80 Rosacea: An Update
Linda F. Stein Gold, MD

S82 Safety When Injecting Facial Anatomy
Roberta D. Sengelmann, MD

S84 Aesthetic Medicine: Treating Cellulite
Jeremy B. Green, MD

S85 Post-Test and Evaluation Form

GUEST EDITORS

Hilary E. Baldwin, MD
Clinical Associate Professor, Rutgers Robert Wood Johnson Medical School
New Brunswick, NJ
Medical Director, The Acne Treatment and Research Center Morristown, NJ

Jeremy B. Green, MD
Clinical Assistant Professor
University of Miami Department of Dermatology & Cutaneous Surgery
Miami, FL
Skin Associates of South Florida Coral Gables, FL

Linda F. Stein Gold, MD
Director of Dermatology Clinical Research
Division Head of Dermatology
Henry Ford Hospital
Detroit, MI

Craig L. Leonardi, MD
Clinical Professor of Dermatology
Saint Louis University Medical School
St. Louis, MO

Kenneth B. Gordon, MD
Professor and Thomas Russell Family/Milwaukee Community Physicians
Chair of Dermatology
Medical College of Wisconsin Milwaukee, WI

Roberta D. Sengelmann, MD
Clinical Associate Professor
Department of Dermatology
University of California, Irvine School of Medicine
Private Practice Santa Barbara, CA
HIGHLIGHTS OF
Skin Disease Education Foundation’s
42nd Annual Hawaii Dermatology Seminar®
Grand Hyatt Kauai, Hawaii; February 4–9, 2018

Hilary E. Baldwin, MD; Linda F. Stein Gold, MD; Kenneth B. Gordon, MD; Jeremy B. Green, MD; Craig L. Leonardi, MD; Roberta D. Sengelmann, MD

Abstract
Updates on managing some of the most common dermatologic conditions for which patients seek care illuminated presentations at the Skin Disease Education Foundation’s 42nd Annual Hawaii Dermatology Seminar®. This educational supplement summarizes the highlights of clinical sessions presented during this CME/CE conference. Treatment of psoriasis has continued to advance, with three interleukin (IL)-17 antagonists approved by the US Food and Drug Administration (FDA) and a fourth in phase 3 trials. An authority on the use of biologics in psoriasis presents current data on the safety and efficacy of these therapies. Tumor necrosis factor (TNF) inhibitors also retain a place in the management of psoriasis, with records of long-term safety. A fourth TNF inhibitor awaits FDA approval for use in psoriasis, offering data on transmission during pregnancy and lactation. An expert on the use of this drug class presents the evidence. Topical therapies remain the cornerstone of care for many patients with psoriasis as well as those with rosacea. Our faculty update readers about new and investigational topical therapies for moderate or severe psoriasis, as well as for acne and rosacea. The current literature on monitoring patients receiving isotretinoin also is summarized.

Aesthetic and cosmetic dermatology services form a sizable portion of some practices. Our faculty review data on safety of topical and procedural therapies for cellulite as well as safe injection of facial fillers.

Keywords
Acne; adalimumab; adapalene; bimekizumab; brimonidine; brodalumab; cellulite; certolizumab pegol; cosmetic dermatology; doxycycline; etanercept; facial filler injection; halobetasol propionate; IL-17 inhibitors; isotretinoin; isoxiquin; monoclonal; oxymetazoline hydrochloride; psoriasis; tumor necrosis factor inhibitors; secukinumab; tapinarof; tazarotene; vascular occlusion

1 Clinical Associate Professor, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, Medical Director, The Acne Treatment and Research Center, Morristown, NJ
2 Director of Dermatology Clinical Research, Division Head of Dermatology, Henry Ford Hospital, Detroit, MI
3 Professor and Thomas Russell Family/Milwaukee Community Physicians, Chair of Dermatology, Medical College of Wisconsin, Milwaukee, WI
4 Clinical Assistant Professor, University of Miami Department of Dermatology & Cutaneous Surgery, Miami, FL, Skin Associates of South Florida, Coral Gables, FL
5 Clinical Professor of Dermatology, Saint Louis University Medical School, St. Louis, MO
6 Clinical Associate Professor, Department of Dermatology, University of California, Irvine School of Medicine, Private Practice, Santa Barbara, CA

Publication of this CME/CE article was jointly provided by University of Louisville, Postgraduate Institute for Medicine, and Global Academy for Medical Education, LLC, and is supported by educational grants from Ortho Dermatologies, LEO Pharma Inc., Merz North America, Inc., and Galderma Laboratories, L.P. All of the faculty authors have received an honorarium for participation in this activity. They acknowledge the editorial assistance of Eileen McCaffrey, medical writer, and Global Academy for Medical Education in the development of this continuing medical education journal supplement.

Hilary E. Baldwin, MD, Speakers Bureau: Allergan; Galderma; Valeant. Contracted Research: Dermira; Galderma; Novan; Valeant.
Linda F. Stein Gold, MD, Speakers Bureau: Allergan; Celgene; Galderma; Leo; Novartis; Pfizer; Valeant. Consultant: AbbVie; Allergan; Celgene; Ga
derma; Leo; Medimetriks; Novartis; Pfizer; Promius; Valeant. Fees for Non-CME Services Received Directly from a Commercial Interest or Its Agent: AbbVie; Allergan; Leo; Medimetriks; Novan; Novartis; Pfizer; Promius; Sebela; Valeant. Contracted Research: Allergan; Aqua; Dermira; Galderma; Leo; Pfizer; Valeant.
Kenneth B. Gordon, MD, Consultant: AbbVie; A
gen; Bohringer Ingelheim; Celgene; Dermira; Eli Lilly; Janssen; Novartis; Pfizer. Contracted Research: AbbVie; Bohringer Ingelheim; Celgene; Janssen; Novartis.
Jeremy B. Green, MD, Consultant: AbbVie; Cutera; Galderma; Merz. Consultant: Allergan; Endo; Galderma; Merz. Contracted Research: Allergan; BioPharmX; Brickell Biotech; Cutera; Galderma; Merz; Revance; Sienna. Stocks/Stock Options/Ow
ership Interest: Candesant; Illustris.
Craig L. Leonardi, MD, Consultant: AbbVie; Celgene; Eli Lilly; Novartis. Consultant: AbbVie; A
gen; Bohringer Ingelheim; Dermira; Eli Lilly; Janssen; Leo; Pfizer; Sandor; UCB. Contracted Research: Actavis; AbbVie; A
gen; Bohringer Ingelheim; Celgene; Cellectucit; Coherus; Corrona; Dermira; Eli Lilly; Galderma; Glenmark; Janssen; Leo; Merck; Novartis; Novella; Pfizer; Sandoz; Stiefel; Wyeth.
Roberta D. Sengelmann, MD, Speakers Bureau: Merz. Consultant: Allergan; Castle; Merz.

Address reprint requests to: Linda F. Stein Gold, 2360 Heronwood Dr., Bloomfield Hills, MI 48302, LSTEIN1@hfhs.org

1085-5629/13/$-see front matter © 2018 Frontline Medical Communications
doi: 10.12788/j.sder.2018.031
Optimizing Topical Therapy in Psoriasis

Systemic biologic agents have revolutionized care of psoriasis, but topicals remain the mainstay of dermatologic therapy. This article addresses how vehicle affects drug potency, and looks at recent advances in topical therapy.

Vehicle Impacts Drug Penetration and Efficacy A drug’s effectiveness depends in part on its delivery to the desired site of action, which is influenced by the vehicle. In one series of studies, betamethasone valerate penetration into the receptor fluid over 24 hours varied with the vehicle. The highest receptor fluid concentration occurred with the ointment formulation, followed by foam and then cream.1 Adding a second topical therapy can affect receptor fluid concentration of the first agent. Adding tacrolimus ointment to betamethasone valerate cream, for example, enhances the delivery of the steroid compared with betamethasone valerate cream alone. Conversely, adding tacrolimus ointment to betamethasone valerate ointment dilutes both active ingredients, reducing betamethasone valerate delivery compared with betamethasone valerate ointment alone.1

Higher steroid potency does not always lead to higher efficacy. A medium-potency steroid (betamethasone dipropionate 0.05%) emollient spray demonstrated efficacy similar to that of a superpotent steroid lotion (augmented betamethasone dipropionate 0.05%) after 2 weeks of therapy in patients with moderately severe psoriasis. The medium-potency agent had a more rapid onset of benefit.2

The fixed-combination calcipotriol 50 µg/g and betamethasone dipropionate 0.5 mg/g in aerosol foam provides for fully dissolved active ingredients and has demonstrated significantly higher in vitro skin penetration than the same active ingredients in an ointment.1 This translates into higher proportions of patients with psoriasis achieving clear/almost clear with ≥2-step improvement (Physician’s Global Assessment [PGA]) after 4 weeks of therapy with the foam than with the ointment formulation of calcipotriene 0.005% plus betamethasone dipropionate 0.064% (54.6% and 43.0%, respectively; P=0.025).4

Tazarotene-Steroid Fixed Combination for Psoriasis A fixed combination of halobetasol propionate 0.01% and tazarotene 0.045% (HP/TAZ) lotion has been studied in two phase 3 trials in 418 patients with moderate or severe psoriasis. Higher proportions of patients achieved clear/almost clear plus ≥2-grade Investigator Global Assessment (IGA) improvement with the fixed-combination product than with vehicle at week 8 (35.8% and 45.3% with active therapy vs 7.0% and 12.5% with vehicle; P<0.001).5 A phase 2 study (N=212) had previously demonstrated higher rates of treatment success (clear/almost clear plus ≥2-grade improvement) with HP/TAZ at 8 weeks than with either active agent alone in patients with moderate or severe psoriasis (Table).6

Investigational Topicals Tapinarof (GSK2894512). A topical aryl hydrocarbon receptor (AhR) agonist, tapinarof moderates expression of proinflammatory cytokines in human skin.7 It has been studied for both atopic dermatitis and psoriasis.8,9

Janus kinase (JAK) inhibitor. A topical JAK1/JAK2 inhibitor (phosphate 1.0% and 1.5% cream [INCB018424]), applied twice daily for 4 weeks, improved mean lesion scores in patients with psoriasis (n=30).10

Maintenance Therapy A major unanswered question in dermatology across conditions is what do to after completing the recommended length of therapy, since the intervention has not cured the disease. Twice-weekly maintenance therapy with clobetasol propionate maintained remission in 75% of 132 patients over an average of 4 months. Side effects were noted in five patients.11 Pulse therapy with three consecutive doses every 12 hours once a week maintained remission for 12 weeks in 74% (14/19) of those patients applying betamethasone dipropionate and 21% (4/19) of those using vehicle.12

A 1-year-long double-blind study of maintenance therapy with calcipotriene/betamethasone dipropionate foam in psoriasis is in progress. Following 4 weeks of active therapy, patients are randomized to twice-weekly maintenance with active therapy or vehicle. Those who relapse are re-treated with the calcipotriene/betamethasone dipropionate foam.

Summary Topical therapy is the mainstay of dermatologic care. Clinicians should consider the vehicle as well as the active agent when choosing treatment and when prescribing multiple topical therapies. Fortunately, there is an active pipeline with new molecules.

Author: Linda F. Stein Gold, MD

References

Table Efficacy of Halobetasol Propionate 0.01% and Tazarotene 0.045% in Psoriasis, Phase 2 Study

<table>
<thead>
<tr>
<th></th>
<th>Proportion achieving primary outcome* at 8 weeks</th>
<th>P value vs HP/TAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP/TAZ</td>
<td>59</td>
<td>52.5%</td>
</tr>
<tr>
<td>HP</td>
<td>63</td>
<td>33.3%</td>
</tr>
<tr>
<td>TAZ</td>
<td>59</td>
<td>18.6%</td>
</tr>
<tr>
<td>Vehicle</td>
<td>31</td>
<td>9.7%</td>
</tr>
</tbody>
</table>

HP, halobetasol propionate 0.01%; TAZ, tazarotene 0.045%; *≥2 grade Investigator Global Assessment improvement and clear/almost clear

Source: Sugarman JL, et al.6
Anti–IL-17 Agents in Moderate to Severe Psoriasis

Medications targeting interleukin (IL)-17 are among the most efficacious options available for treating patients with moderate to severe psoriasis. Secukinumab and ixekizumab each has demonstrated efficacy (Psoriasis Area and Severity Index [PSAI] 75, 90, and 100) superior to that of etanercept and ustekinumab.1,5

Secukinumab Roughly two-thirds to 82% of patients reached PASI 75 after 12 weeks of therapy with secukinumab 150 mg or 300 mg.1 Nearly 80% of patients receiving the 300-mg dose reached PASI 90 after 16 weeks of therapy (57.6% with ustekinumab; \(P<0.0001 \)). Half of the patients receiving secukinumab 300 mg reached PASI 75 at week 4, illustrating the early onset of action.2

Efficacy and tolerability continued at 5 years, with PASI 75, 90, and 100 response rates of 88.5%, 66.4%, and 41.0%, respectively (with secukinumab 300 mg, the recommended dose for most patients with psoriasis).6,7 The annual adverse event (AE) incidence rate decreased from 204.6 to 87.2 per 100 subject-years from year 1 to 5; no statistical comparison was performed. One death occurred, which was deemed unrelated to treatment. The rate of serious AEs remained stable. Investigators reported no opportunistic infections, two major adverse cardiovascular events (including one deemed unrelated to treatment), three malignancies, nine mild or moderate Candida infections, and three cases of ulcerative colitis, including an exacerbation of previous ulcerative colitis.8 The risk of Candida infection is a class effect of IL-17A inhibitors, as this cytokine plays a major role in protecting against this pathogen.8

Secukinumab also has demonstrated efficacy for treatment of moderate to severe psoriatic arthritis (PsA) in a phase 3 trial (N=996). From 56% to 63% of patients achieved American College of Rheumatology 20% improvement (ACR20) after 16 weeks, depending on the secukinumab regimen (150 mg or 300 mg with loading dose, 150 mg without loading dose). All secukinumab regimens inhibited radiographic progression over 16 weeks of treatment. Large majorities of patients showed no radiographic progression at week 24 (74% to 88%, depending on the secukinumab regimen). Mean disease activity (Disease Activity Score using C-reactive protein [DAS28-CRP]) and physical function (Health Assessment Questionnaire Disability Index [HAQ-DI]) improved significantly with all secukinumab regimens, compared with placebo.9

Ixekizumab Nearly 90% of patients attained PASI 75 at 12 weeks with ixekizumab 80 mg given every 2 weeks after a 160-mg starting dose in the phase 3 trials.4,3 As with secukinumab, response was rapid; roughly half of patients attained PASI 75 by week 4.4

Ixekizumab also has demonstrated superiority to ustekinumab in the treatment of psoriasis (N=302). Nearly three-quarters (72.8%) of patients randomized to ixekizumab achieved PASI 90 after 12 weeks of therapy, compared with 42.2% of those receiving ustekinumab (\(P<0.001 \)). Ixekizumab maintained superior efficacy at week 24 (PASI 75, 90, and 100).5 Ixekizumab was administered as a 160-mg starting dose, followed by 80 mg every 2 weeks for 12 weeks, then 80 mg every 4 weeks—the US Food and Drug Administration (FDA)-approved dosage for psoriasis.10 The rate of AEs did not differ significantly by treatment arm. No deaths were reported.5

Skin clearing generally was maintained through 60 weeks in an extension trial, in which patients from a phase 3 study received 80 mg ixekizumab every 4 weeks.3 Long-term efficacy persisted for those receiving ixekizumab every 2 weeks through week 12, then every 4 weeks thereafter (N=385), with 80% of patients reaching PASI 90 and 56% clear (PASI 100) at 108 weeks. Most (85%) treatment-emergent AEs were mild or moderate in severity. About 3.8% of patients developed Candida infections. Cerebro-cardiovascular events occurred in 2.4%, malignancies in 1.7%. Less than 1% developed grade 3 or 4 neutropenia (0.6%), Crohn’s disease (0.2%), or ulcerative colitis (0.2%). Five deaths occurred, all of which were deemed unrelated to study therapy.11

Ixekizumab given every 2 or 4 weeks also has demonstrated efficacy in PsA, with ACR20 rates of 62.1% (dosed at once every 2 weeks) and 57.9% (dosed at once every 4 weeks), compared with 30.2% for placebo (\(P<0.001 \)) and 57.4% for adalimumab (statistical comparison to ixekizumab not performed) after 24 weeks of treatment. It also reduced progression of structural (radiographic) damage compared with placebo, as measured by the van der Heijde modified total Sharp score (mTSS; \(P<0.01 \)). Most patients receiving ixekizumab (89.0% and 94.8%, every 4 weeks and every 2 weeks dosing, respectively) or adalimumab (95.8%) demonstrated no structural disease progression (defined as ≤0.5 change in mTSS at week 24; \(P≤0.001 \) vs placebo), compared with 77.4% in the placebo group who attained this milestone. Mean disease activity (DAS28-CRP) and physical function (HAQ-DI) also improved significantly with both ixekizumab doses compared with placebo.12

Efficacy in PsA was maintained in an extension trial. Roughly two-thirds of patients continuing ixekizumab once every 2 weeks and once every 4 weeks from the 24-week study demonstrated ACR20 response at 52 weeks (69.1% and 68.8%, respectively).13

Brodalumab Unlike secukinumab and ixekizumab, which target the IL-17A subunit, brodalumab blocks the receptor subunit IL-17RA. This may lead to a broader range of potential effects, because multiple ligands (IL-17A, IL-17C, IL-17E, and IL-17F) share this receptor.14

Like the other anti–IL-17 agents, this receptor blocker has demonstrated high efficacy in psoriasis: 85% and 86% of patients reached PASI 75 at week 12 with the higher (210-mg) dose, in two phase 3 studies (\(P=0.007 \) vs ustekinumab in one study). PASI 75 rates at 12 weeks with the lower dose studied (140 mg) were similar to those observed with ustekinumab (67% and 69%, brodalumab 140 mg; 70% and 69%, ustekinumab, two studies) compared with active therapy (ustekinumab). Response (PASI 75) occurred faster with brodalumab than ustekinumab (~4 weeks with brodalumab 210 mg, ~6 weeks with brodalumab 140 mg, ~8 weeks with ustekinumab; \(P<0.001 \), both brodalumab doses vs ustekinumab). Exposure-adjusted rates of AEs (per 100 patient-years through week 52, two studies) included mild to moderate Candida infection (5.2, 5.7), depression (1.0, 1.3), and serious AEs (8.3, 7.9). Four deaths occurred over 52 weeks among patients receiving brodalumab, due to stroke (one), cardiac arrest (two), and motor vehicle accident (one).15

Six completed suicides were documented in patients receiving brodalumab treatment; four of these occurred during the phase 3 psoriasis trial program. In one case, the cause of death was judged indeterminate, because drug overdose was also a possible cause of death. Suicidal ideation also was reported. As a result, brodalumab carries a black box warning for suicide and suicidal ideation; the drug is available only through a Risk Evaluation and Mitigation Strategy (REMS) program. Prescribers and pharmacies must be certified with the program, and patients must sign a patient-prescriber agreement form to receive the drug.16,17

Bimekizumab An agent in development, bimekizumab blocks the subunits IL-17A and IL-17F.19 A phase 2b, dose-ranging trial of this agent reported 12-week PASI 90 response rates of 75.0% and 79.1%, and PASI 100 rates of 60% and 55.8%, for the two highest doses studied.18 Phase 3 trials are in progress.20-22

Inflammatory Bowel Disease and the IL-17 Antagonists All of the agents in this class have been associated with rare onset or exacerbation of inflammatory bowel disease (IBD).6,11,15 An analysis...
recently reported adjudicated IBD cases from the 4,209 patients exposed to ixekizumab in any of seven clinical trials, followed for up to 256 weeks. The incidence rate for Crohn’s disease and ulcerative colitis was 1.1 and 1.9 per 1,000 patient-exposure years, respectively. A total of 19 patients were judged to have probable or definitive IBD-related AEs; 15 of those were newly diagnosed with IBD and four experienced flares of known IBD. Eleven of 19 patients stopped ixekizumab therapy because of IBD-related AEs. Of the 16 patients who reported a history of IBD, four had an IBD treatment-emergent AE. Overall, IBD cases were uncommon (<1%) in this clinical trial population.25

Summary The anti–IL-17 compounds have substantially advanced therapy for psoriasis, with sizable proportions of patients achieving efficacy endpoints of 90% or 100% clear after 12 weeks of treatment. All three FDA-approved agents in this class have demonstrated efficacy superior to that of active comparators (etanercept and/or ustekinumab) in psoriasis.3,4,15 Secukinumab and ixekizumab have shown efficacy compared with placebo in psoriatic arthritis.9,12

Monitoring should include surveillance for AEs of special interest, including opportunistic and serious infections, Candida infection, IBD, cardiovascular disease, and malignancy. These events occurred uncommonly or rarely in clinical trials.6,11,15,23 Brodalumab blocks a receptor rather than neutralizing a subunit and thus has the potential for broader effects than secukinumab and ixekizumab. It is contraindicated in patients with Crohn’s disease, has been associated with completed suicides and suicidal ideation, and can be prescribed only through a REMS program.16

Author: Craig L. Leonardi, MD

References

Anti-TNF Therapy for Psoriasis

The tumor necrosis factor (TNF) inhibitors, the first biologics approved for psoriasis therapy that are still in use, continue to play a key role in treatment. This article offers an update on the use of TNF inhibitors in psoriasis therapy.

Cetrolizumab pegol, a TNF inhibitor available for other indications, has recently been studied in psoriasis. At week 16, at least three-quarters of patients achieved PASI 75—75% improvement in Psoriasis Area and Severity Index—with 400 mg once every 2 weeks (75.8% and 82.6%) and at least two-thirds reached PASI 75 with 200 mg once every 2 weeks (66.5% and 81.4%), in two phase 3 trials. Efficacy was well maintained at week 48 for both doses (87.1% and 81.3%, higher dose; 67.2% and 78.7%, lower dose) among subjects who were initial responders and continued on drug.1 Infections were common, consistent with other biologic therapies (50% and 53% of patients, lower and higher dose, respectively). Most frequently, they were upper respiratory infections and nasopharyngitis. Two serious infections and no opportunistic infections were reported.1

Cetrolizumab pegol uses an antibody fragment (Fab’) conjugated to polyethylene glycol (PEG); it does not contain a fragment crystallizable (Fc) region. This characteristic may account for the minimal transfer of cetolizumab from mother to infant during pregnancy,2 because the neonatal Fc receptor mediates immunoglobulin G transport from the mother to the infant. Among 14 infants whose mothers were treated with cetolizumab pegol during pregnancy, 13 had no quantifiable drug levels at birth and one had a minimal drug level at birth. Three of 15 umbilical cord samples had quantifiable cetolizumab pegol levels (≤0.048 μg/mL).2 Minimal transfer through breast milk also has been documented.3

TNF Inhibitors in Pediatrics

Etanercept has demonstrated long-term safety and efficacy in children and adolescents with moderate to severe psoriasis. During a 5-year, open-label extension study, no opportunistic infections and one treatment-related...
serious adverse event (AE) were reported. The most common AEs were upper respiratory tract infection (37.6%), nasopharyngitis (26.0%), and headache (21.5%). PASI 75 rates remained at 60% to 70%, with PASI 90 rates of 30% to 40%, through week 264.4

Weight-based adalimumab (0.8 or 0.4 mg/kg, once every 2 weeks) demonstrated superior efficacy and similar safety to weight-based oral methotrexate (0.1-0.4 mg/kg) over 16 weeks in a phase 3 trial in 114 children and adolescents.5 Higher-dose, but not lower-dose, adalimumab demonstrated efficacy superior to that of methotrexate at 16 weeks (PASI 75 rates of 58%, 44%, and 32%, higher-dose adalimumab, lower-dose adalimumab, and methotrexate, respectively; P=0.027 for higher-dose adalimumab vs methotrexate). Infections, the most frequently reported AEs, occurred in 45%, 56%, and 57% of the patients treated with higher-dose adalimumab, lower-dose adalimumab, and methotrexate, respectively.5

TNF Inhibitors and Malignancy A year or more of TNF inhibitor therapy has been associated with a statistically significantly higher risk of malignancy (odds ratio [OR], 1.54; 95% CI, 1.10-2.15; P=0.01), compared with no anti-TNF therapy.6 This finding comes from a case-control study of participants in Psoriasis Longitudinal Assessment and Registry (PSOLAR). PSOLAR, sponsored by Janssen,7 includes patients who received or were candidates to receive systemic therapy (including phototherapy) for psoriasis. A total of 252 patients with newly diagnosed malignancy since registry entry (other than nonmelanoma skin cancer [NMSC]) and 1,008 controls were included. Neither methotrexate nor ustekinumab therapy was associated with increased risk of malignancy.8 This finding is consistent with an analysis of data from patients receiving anti-TNF therapy for rheumatoid arthritis. That study revealed a higher risk for melanoma and NMSC associated with infliximab and etanercept therapies.8

Does Anti-TNF Therapy Reduce Cardiovascular Risk? Researchers have speculated that the elevated cardiovascular (CV) risk associated with psoriasis results from underlying inflammation.9 In theory, anti-inflammatory treatment for psoriasis may ameliorate CV risk. A claims data analysis (2000-2011) compared the risk of major CV events among adults with psoriasis receiving TNF inhibitors or methotrexate.10 TNF inhibitor therapy was associated with reduced risk of major CV events in patients with psoriasis (Kaplan-Meier 12-month rates of major CV events, 1.45% and 4.09% for TNF inhibitor therapy and methotrexate, respectively; P<0.001).

Summary TNF inhibitors remain a relevant option for psoriasis, offering years of safety data in pediatric as well as adult patients, possible reduction in cardiovascular risk, and data about the risk of malignancy. A TNF inhibitor recently studied for psoriasis has documented minimal transmission during pregnancy and lactation.

Authors: Kenneth B. Gordon, MD, Craig L. Leonardi, MD

References

What's New in Acne

Topics covered in this literature review include the frequency of laboratory monitoring and surveillance for rhabdomyolysis during isotretinoin therapy; an alternative therapy for patients with severe acne; the association of diet and acne; and investigational therapies.

Laboratory Monitoring During Isotretinoin Therapy Guidance regarding the frequency of laboratory monitoring during isotretinoin therapy has changed over the years. The package insert recommends baseline fasting lipid and hepatic panels with repeated testing at weekly or biweekly intervals until “the response has been established.”9 One recent report found no mean difference in complete blood count (CBC), hepatic panels, and lipid panels between weeks 8 and 20.10 Another reported that hypercholesterolemia and/or alanine transaminis detected after a mean of 50 and 62 days of therapy, respectively.9 This study found no need to measure CBC.10 Both of these reports concluded that there is no basis for laboratory monitoring after 2 months, in the absence of abnormal findings or a dosage change.2,3

Elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were frequently accompanied by elevated creatine kinase (CK) in one analysis, suggesting that the abnormal ALT and AST findings may have reflected muscle rather than liver damage. The investigators suggested that gamma-glutamyltransferase (GGT) is more relevant than ALT and AST for monitoring liver function. Multiple CK elevations were common (57/246), especially in males (56/57 with multiple CK elevations).8

Based on these findings, in our practice we monitor GGT rather than ALT and AST, we follow CK (particularly in males); and we do not monitor CBC. We perform laboratory tests at months 1 and 3, but at any time isotretinoin dose is increased or if patients alter their exercise routine.

Detecting Rhabdomyolysis During Isotretinoin Therapy Rhabdomyolysis is rarely reported in patients taking isotretinoin; when it occurs, it generally is associated with strenuous physical activity.1 Research suggests that exercise and isotretinoin can act synergistically to raise CK levels.5,6

Not all CK elevations herald rhabdomyolysis, however. Moderately intense exercise with muscle contractions (eg, weight lifting or downhill running) can raise CK to levels associated with rhabdomyolysis without causing renal dysfunction.7

CK elevations substantially exceeding 11 times the upper limit of normal have been associated with rhabdomyolysis, along with muscle symptoms, pigment nephropathy, and brown urine with myoglobinuria.8 Yet CK elevations following strenuous exercise vary widely, as do CK values associated with rhabdomyolysis.8 Patients with myalgia, weakness, and dark urine along with CK elevations should be followed closely, with findings evaluated in the context of patient history and exercise habits.8 CK increases tend to be more common and more pronounced in males,
those of black race, and untrained individuals (eg, “weekend warriors”).

Our center measures CK before starting isotretinoin in all patients who are athletic. This is especially important in males, given the fact that reports of elevated CK are more common in males than females. Patients are asked to note their exercise the day before and after follow-up blood tests. Those with a CK ≥1,000 IU/L are contacted with advice to drink more water and reduce exercise for a few days.

An Alternative to Isotretinoin Therapy

A 12-week, open-label, multicenter study demonstrated that adapalene 0.3%/benzoyl peroxide 2.5% (ADAP 0.3%/BPO 2.5%) gel plus oral doxycycline 200 mg/day is efficacious in patients with severe inflammatory acne (Investigator Global Assessment [IGA] 4) who are candidates for isotretinoin (N=186). The inflammatory lesion count decreased significantly from baseline, with a mean reduction of 66.2% (P<0.0001). More than one-third (37%) of patients achieved scores of clear/almost clear at week 12.

Isotretinoin-Induced Acne Fulminans

Eruption of acne fulminans (ulceration, crusting, and scarring) during isotretinoin therapy is most common in teenage males with acne prominence on the back and chest. It usually is not accompanied by systemic symptoms.

Experts at a consensus conference recommend discontinuing isotretinoin and initiating systemic corticosteroids (<0.5-1 mg/kg/day) to gain immediate control of inflammation, until crusted lesions have healed. Low-dose isotretinoin (0.1 mg/kg/day) can be added and overlapped with a steroid taper. The isotretinoin dose can be increased as the steroid dose is decreased. Starting isotretinoin at a low dose (<0.5 mg/kg/day) may reduce the risk of acne fulminans.

A New Formulation of Doxycycline

A new delayed-release formulation of doxycycline hyclate tablet has a modified polymer enteric coat that increases acid resistance and further delays absorption by 10 to 15 minutes, thereby decreasing associated gastrointestinal distress.

Investigational Therapies

Topical minocycline gel. A phase 2b, 12-week-long, dose-ranging trial of a topical minocycline gel (1% and 2% vs vehicle) in patients with moderate or severe inflammatory acne has been completed; at the time of this writing, results have not been published. Preclinical studies showed no detectable concentrations in plasma.

Topical minocycline foam 4%. This agent reduced absolute inflammatory lesion count significantly more than a foam vehicle in two identical 12-week phase 3 studies (N=466, N=495). Only one of these studies reported significant findings on the other coprimary endpoint (IGA score of clear or almost clear plus at least a 2-grade improvement from baseline [active therapy vs vehicle: 14.7% vs 7.9%; P=0.04; 8.0% vs 4.7%; P=0.22]).

Oral sarecycline. A once-daily tetracycline-class antibiotic, sarecycline 1.5 and 3.0 mg/kg generated significantly greater reduction in inflammatory lesion counts at week 12 compared with placebo (by 52.7%, 51.8%, and 38.3%, respectively) in a phase 2 trial of 285 patients with moderate or severe acne. Rates of gastrointestinal adverse events were similar to those of placebo.

Topical olumacostat glasaretil (OG) 7.5%. This topical sebum inhibitor did not meet its coprimary endpoints in two phase 3 trials. Development is not proceeding at the time of this writing.

Diet and Acne

A recent study demonstrated that consumption of milk is associated with acne. Nonfat and low-fat milk, but not full-fat milk or total dairy consumption, were significantly associated with acne in teens 14 to 19 years old (N=225). An earlier study in teenage boys (N=4,273, prospective cohort) reported similar findings. Conversely, a study in teen girls (N=6,994, prospective cohort) linked the risk of acne to consumption of total milk and whole milk, as well as low-fat and skim milk. Consumption of dietary carbohydrates (higher total and as a percentage of energy intake, as well as glycemetic load) also has been linked to the rate of moderate/severe acne.

Author: Hilary E. Baldwin, MD

References

Rosacea: An Update

Recent research continues to elucidate the role of inflammation in rosacea and its association with other diseases. New therapies include topical minocycline, the alpha-adrenergic receptor agonist oxytetracycline, and the antiparasitic/anti-inflammatory agent ivermectin used alone and concurrently with or before brimonidine therapy.

Doxycycline: Clinical Results Correlate With Biomarkers

Evidence suggests that doxycycline efficacy in rosacea correlates with changes in biomarkers. Attaining clear/almost clear (Investigator Global Assessment [IGA] score 0 or 1) at week 12 with doxycycline was correlated with reduced levels of cathelicidin protein in the stratum corneum in adults with papulopustular rosacea. Doxycycline treatment also was associated with inhibition of mRNA of kallikrein 5 and cathelicidin antimicrobial peptide at week 12 compared with baseline (difference vs placebo, P<0.01), as well as a decrease in kallikrein and matrix metalloproteinase activity at week 2 compared with baseline (difference vs placebo, P<0.01).

Inflammation in Rosacea: More Than Skin Deep?

Studies published over the last 5 years have detected an association between...
rosacea and Parkinson’s disease,2 glioma,7 dementia,4 depression and anxiety disorders,5 allergies,8 various gastrointestinal diseases (celiac disease, Crohn’s disease, gastroesophageal reflux disease, ulcerative colitis, and irritable bowel syndrome),6-9 metabolic diseases,10 urogenital diseases,6 female hormone imbalance,9 and multiple autoimmune diseases in women (type 1 diabetes, multiple sclerosis, and rheumatoid arthritis).10 Some evidence suggests an association with cardiovascular risk factors,11,12 although other studies have not found a linkage with cardiovascular disease.13,14 Evidence for an association of rosacea with ulcerative colitis is mixed.9

Treatment: Topical Minocycline Foam In a phase 2 study of patients with papulopustular rosacea, topical minocycline foam 1.5% and 3% each reduced the inflammatory lesion count from baseline to 12 weeks significantly more than vehicle (P<0.001). Efficacy rates with the two concentrations did not differ significantly; phase 3 studies are evaluating the lower concentration.15,16 A topical minocycline gel (1% and 2% concentrations) also is being studied in rosacea.17

Oxytetracycline Hydrochloride Cream 1% In two pivotal studies, roughly 12% to 18% of patients achieved at least a 2-grade improvement in clinician and patient self-assessment on day 29 of therapy (P<0.001 vs vehicle, both studies). Participants had moderate to severe facial erythema of rosacea at baseline.18,19 The rate of treatment-related adverse events (TRAEs) during the 29-day studies was 6.3% and 8.5% with active therapy and 5.1% and 5.0% with vehicle. No treatment-emergent adverse event, related or not, was observed in more than 3.1% of patients in either study.18,19

Anti-inflammatory/Antiparasitic Agent: Ivermectin Approximately 40% of patients with moderate to severe papulopustular rosacea achieved clear/almost clear after 12 weeks of therapy with ivermectin 1% cream once daily at bedtime, in two randomized, double-blind, vehicle-controlled studies (P<0.001 vs vehicle).20

A 16-week study compared ivermectin 1% cream once daily to metronidazole 0.75% cream twice daily in patients with moderate or severe papulopustular rosacea. Percentage reduction from baseline in inflammatory lesion counts (primary endpoint) was significantly larger with ivermectin than with metronidazole at week 16 (83.0% and 73.7%, respectively; P<0.001). A higher proportion of patients achieved clear/almost clear with ivermectin (84.9% and 75.4%, respectively; P<0.001).21

To ascertain time to relapse, patients who attained clear/almost clear during the 16-week trial discontinued therapy and were followed for another 36 weeks. Remission duration was significantly longer in patients who had used ivermectin. Median time to first relapse (IGA ≥ 2) was 115 days following ivermectin therapy and 85 days in those who had received metronidazole. Relapse rates at 36 weeks after treatment discontinuation were significantly lower in those who had received ivermectin (62.7% and 68.4%, ivermectin and metronidazole, respectively; P=0.04).22

Post hoc analysis indicated that, regardless of which active therapy was used, treating to clear rather than almost clear in the 16-week trial reduced the risk of relapse (Figure).23

Ivermectin’s efficacy in rosacea has been associated with both anti-parasitic and anti-inflammatory actions. In patients with moderate or severe papulopustular rosacea at baseline, 6 and 12 weeks of ivermectin therapy significantly reduced the mean density of Demodex spp mites on the skin (P<0.001) and also decreased the expression of various inflammatory markers (interleukin-8, LL-37, human β-defensin 3, and tumor necrosis factor-α) at those time points. All 20 patients improved clinically, and 16 achieved IGA clear/almost clear.23

Ivermectin and Brimonidine: Sequentially or Concurrently? Anti-inflammatory therapy is recommended for papulopustular rosacea, and alpha-adrenergic agonists are used for facial erythema associated with rosacea. In patients with both manifestations, should these agents be given concurrently or should the anti-inflammatory agent be started first? A study evaluated this question by comparing a regimen in which topical ivermectin and brimonidine were initiated at the same time to a regimen in which ivermectin was started 1 month before brimonidine. Each of these regimens was compared with two vehicles. Starting both active therapies at the same time was associated with improved efficacy. At week 12, rates of clear/almost clear 3 hours after brimonidine application were 61.2%, 50.0%, and 36.8% for the groups that started both active therapies at the same time, those delaying brimonidine by 1 month, and the two vehicles, respectively. Only the first treatment group (simultaneous initiation) demonstrated efficacy significantly higher than that of the two vehicles (P=0.003).24

Also of interest is that the proportion of patients attaining 100% reduction in inflammatory lesions was higher among those starting both active therapies at the same time compared with the two vehicles (16.3%, 6.5%, and 4.2% at week 12; simultaneous initiation, 1-month delayed brimonidine, and two vehicles, respectively; P=0.015 for simultaneous initiation vs two vehicles). Yet both groups received ivermectin for 12 weeks. The rate of TRAEs was lower with active therapy (4.2%) than with brimonidine monotherapy (~10%).24,25

Summary The central role of inflammation in the pathophysiology of rosacea is underlined by the finding that treatment success with the antibiotic doxycycline is associated with reduction of biomarkers associated with inflammation in rosacea. New approaches to therapy include topical minocycline foam and gel as well as the antiparasitic/anti-inflammatory agent ivermectin, given alone or in combination with an alpha-adrenergic receptor agonist to address facial erythema.

Author: Linda F. Stein Gold, MD

References

4. Egeberg A, Hansen PR, Gislason GH, Thyssen JP. Patients with rosacea have...

Safety When Injecting Facial Anatomy

Injection of fillers is the second most common minimally invasive cosmetic procedure in the United States, with an estimated 2.6 million injections of soft tissue fillers performed in 2016.1 Filler injections are generally well tolerated, with mild and transient side effects such as erythema, bruising, tenderness, and swelling.2 A potentially serious complication is arteriovenous occlusion, which can result from injecting filler into a vessel or compression of the vessel from filler material externally placed. Vascular occlusion causes tissue ischemia, which can lead to skin necrosis, scarring, and less commonly, vision loss, hemiplegia, or stroke.2,3

An intimate knowledge of facial anatomy is crucial for safe injection and mitigation of untoward side effects. While adverse toxin effects usually involve adjacent muscle paresis, adverse filler effects relate more to vascular events. This article focuses on safe injection practices for fillers.

Immediate signs and symptoms of vascular injury during filling include pain, blanching, ecchymosus, or a flash of blood during reflux or even needle removal. Delayed signs include pain or achiness, dusky discoloration, reticulate erythema, and skin breakdown.2,4 Signs of impending vision loss following filler treatment include eye pain, headache, dizziness, reduced vision, ptosis, nausea, and ophthalmoplegia.5 A review of 98 cases of vision complications following filler injection concluded that the most common injection sites associated with this adverse event were the forehead, glabella, nose, and nasolabial folds. Vision complications occurred rarely following injections in most parts of the face, including the temporal region, lips, and chin.2 Following are suggestions based on the literature and Dr. Sengelmann’s practice experience for safe injection in these specific areas. Tables 1 and 2 offer general guidance for preventing and managing vascular occlusion.

Mid-forehead and Glabella *Vascular anatomy.* Small branches of the supratrochlear and supraorbital arteries supply the glabella. 5

Superficial Artery

Supraorbital Artery

Illustration of the blood supply to the glabella. Note the distribution of the supratrochlear and supraorbital arteries.
orbicularis oculi and above the perioristium. Minimize the number of passes. Consider using a blunt tipped cannula when injecting. This is especially important when one is injecting subdermally where vascu-
lature is copious. In so doing, an 18-gauge cannula is used to puncture
the skin, followed by a 25-gauge cannula to thread the filler superficially
under the dermis. Protect the globe and inject above the bony rim. Take
care not to injure the globe or penetrate the orbital septum, behind which
are larger-caliber vessels and orbital fat pads. Small volumes in the orbit
(average, 0.1-0.2 mL per injection thread) are recommended.

Suggested technique. Inject into an immediately subdermal plane.
“Hug” the dermis with the needle. Be aware that the angular artery
can include tortuous, superficial curves. If the goal of treatment is to
volumize and lift the midface, then inject down on the periosteum into
Ristow’s space (at the most superior aspect of the nasolabial folds and
lateral to the nasal ala) with a cannula using depot technique. I favor a
www.plasticsurgery.org/documents/News/Statistics/2016/plastic-surgery-statistics-
www.plasticsurgery.org/documents/News/Statistics/2016/plastic-surgery-statistics-
2. Glaich AS, Cohen JL, Goldberg LH. Injection necrosis of the glabella: protocol
3. Beleznay K, Carruthers JD, Humphrey S, Jones D. Avoiding and treating blindness
4. Hirsch RJ, Cohen JL, Carruthers JD. Successful management of an unusual
presentation of impending necrosis following a hyaluronic acid injection embolus
2007;33:357-360.
5. Brennan C. Avoiding the “danger zones” when injecting dermal fillers and volume
and course of the angular artery regarding its clinical implications. Dermatol Surg.

Aesthetic Medicine: Treating Cellulite

Cellulite is characterized by a dimpled appearance of the skin—typi-
cally in the buttocks and thighs—in which the dermis is tethered by
subcutaneous fibrous septa perpendicular to the skin surface. Other
characteristics of cellulite include striae, laxity, and elevated areas.
It is considered a normal physiological state in women who are past
adolescence, as approximately 85% to 90% of women over the age of
20 have some degree of cellulite. It is thought that the hormonal milieu
of puberty fosters the development of cellulite in women. Hormones
are thought to play a central role in the pathophysiology of cellulite,
which typically worsens with pregnancy, hormonal contraception, and
hormone replacement therapy.

Imaging studies have identified differences in the skin structure of
women with cellulite as compared both with women without cellulite
and with men. Women with cellulite have a higher percentage of fibrous
septa oriented perpendicular rather than parallel to the skin surface,
compared with men and with women without cellulite, whose fibrous
septa are oriented obliquely or parallel to the skin surface. Raised
areas result from the projection of fat to the skin surface. These altera-
tions in connective tissue produce the bumpy appearance associated
with cellulite.
Treatments Topical retinol. In a small study (N=15), skin elasticity increased by 10.7%, and viscosity decreased by 15.8%, after 6 months of topical retinol treatment.7 Topical treatments for cellulite all seek to strengthen the “roof,” or skin surface, thereby improving the rippled appearance.

Laser subcision. A three-step treatment with a 1440-nm side-firing Nd:YAG laser was studied in 15 women with moderate to severe cellulite (Cellulaze™, Cynosure, Inc.). Treatment involved aiming the laser fiber deeply to debulk fat, orienting the fiber parallel to the skin surface to thermally subcise the septae, and pointing the fiber toward the undersurface of the skin to induce dermal remodeling and skin tightening. Mild ecchymosis and edema resolved about 2 weeks post procedure, with no other adverse events reported. Average patient and investigator satisfaction was 4.1/6 and 5.2/6, respectively, at 3 months, and 4.9/6 and 5.0/6 at 6 months.7 Although this cellulite treatment has been successful in the hands of expert clinicians, it has not been widely adopted.

Tissue stabilized-guided subcision (TSGS). Another system that targets dimples and short horizontal lines of cellulite employs a vacuum-assisted tissue capture platform to provide precise control of the depth and area of tissue release (Cellulaze™; Merz North America). A vacuum chamber lifts and fixes the tissue for the anesthesia needle or tissue release microblade, minimizing operator variability (Figure).2 In the pivotal trial, 20 women with moderate to severe cellulite received an single TSGS treatment. The mean baseline Cellulite Severity Scale (CSS) score of 3.4 (0 to 5) decreased significantly to 1.3 at 3 months and 1.4 at 1 year post procedure (P<0.0001). Patient satisfaction scores indicated that, although 100% of subjects were unsatisfied to very unsatisfied at baseline, 85.5% reported being satisfied or very satisfied at 3 months, and 100% rated themselves satisfied or very satisfied at 1 year.2 The most common treatment-related adverse effects were ecchymosis (n=37), hemosiderosis (n=19), and soreness (n=19). Follow-up evaluation 3 years after the single treatment revealed treatment benefits persisted with no recurrence of cellulite.8

Improving Skin Laxity Skin laxity increases with age, potentially worsening the appearance of cellulite. Radiofrequency, infrared light, and acoustic wave therapy are among the noninvasive, energy-based interventions to address this condition.4 Microfocused ultrasound with visualization followed by injection of diluted calcium hydroxylapatite (CaHA) significantly improved the CSS (P<0.001) in 20 women with skin laxity and moderate to severe cellulite. Treatment effects of erythema, edema, and bruising were rated as mild and resolved within a few days. Most women (19/20) rated themselves as satisfied or very satisfied with treatment results 90 days post procedure.9

Summary Cellulite is a normal, common phenomenon among adult women that can nonetheless cause considerable distress. Treatment options include topicals such as retinol, noninvasive energy-based devices to tighten the skin, laser-based subcision, and tissue stabilized-guided subcision. On the horizon, an injectable collagen drug to target fibrous septae is in phase 3 trials.10,11 Additionally, there is increasing interest in utilizing dilute biostimulators like CaHA and poly-L-lactic acid to induce neocollagenesis and improve skin quality in individuals with cellulite.12

Author: Jeremy B. Green, MD

FIGURE Tissue Release During Tissue Stabilized-Guided Subcision

Marked cellulite dimple is captured in the vacuum platform. The reciprocating microblade is inserted into the skin, and the motor module is guided through the arc of the treatment platform to subcise the fibrous septae.

Photo courtesy of Jeremy B. Green, MD.

References

To get instant CME/CE credits online, go to http://tinyurl.com/HDS18Supp. Upon successful completion of the online test and evaluation form, you will be directed to a Web page that will allow you to receive your certificate of credit via e-mail or you may print it at that time. If you have any questions or difficulties, please contact the Global Academy for Medical Education office at info@globalacademycme.com.

Questions: For each question or incomplete statement, choose the answer or completion that is correct. Circle the most appropriate response.

1. Which of the following accurately describes the safety of tumor necrosis factor (TNF) inhibitors in psoriasis?
 A. Etanercept has demonstrated long-term safety over 5 years in children and adolescents with psoriasis.
 B. TNF therapy has been associated with a higher risk of malignancy in patients with rheumatoid arthritis but not those with psoriasis.
 C. TNF therapy did not affect rates of major cardiovascular events in patients with psoriasis.
 D. The rate of opportunistic infections increased over time in children with psoriasis treated with etanercept.

2. What percentage of patients with moderate or severe psoriasis achieved clear/almost clear plus ≥2-grade Investigator Global Assessment improvement after 8 weeks of therapy with a fixed combination of halobetasol propionate 0.01% and tazarotene 0.045% lotion in two phase 3 trials?
 A. 5% to 15%
 B. 15% to 30%
 C. 35% to 50%
 D. 50% to 75%

3. Based on a literature review, this activity recommends which of the following monitoring procedures during isotretinoin therapy for acne?
 A. Monitor complete blood count (CBC) at months 1 and 3, and if isotretinoin dose is increased.
 B. Measure alanine aminotransferase (ALT) and aspartate aminotransferase (AST) at baseline and months 1 and 3.
 C. Counsel immediate treatment cessation and require measurement of renal function if creatinine kinase (CK) ≥1,000 IU/L.
 D. Monitor gamma-glutamyl transferase (GGT) rather than ALT and AST, follow CK, and do not monitor CBC.

4. Investigational therapies actively under development for acne at this writing include:
 A. Topical minocycline gel
 B. Topical minocycline foam 1% and 3%
 C. Topical olumacostat glasaretil 7.5%
 D. Adapalene 0.3%/benzoyl peroxide 2.5%

5. Which regimen has proved more efficacious for treating patients with both papulopustular and facial erythema manifestations of rosacea?
 A. Ivermectin only
 B. Ivermectin and brimonidine started simultaneously
 C. Ivermectin first, followed by brimonidine
 D. Brimonidine first, followed by ivermectin

6. Five-year efficacy and safety data in psoriasis are available for which of the following interleukin (IL)-17 antagonists?
 A. Brodalumab
 B. Ilekizumab
 C. Secukinumab
 D. Bimekizumab

7. A pivotal trial of tissue stabilized-guided subcision (TSGS) for cellulite reported persistence of treatment benefits after 3 years, with no recurrence of cellulite. How many treatments of TSGS did patients undergo?
 A. 1
 B. 2
 C. 1 to 3, depending on treatment response
 D. 2 to 4, depending on treatment response

8. Preparations to prevent and manage vascular occlusion during facial filler injection include all of the following except:
 A. Establish relationships with ophthalmologists, oculoplastics, and neurology colleagues who will examine patients in an emergency, should complications develop
 B. Reflux prior to injecting, and inject only if blood does not enter the syringe
 C. Keep the needle or cannula in the same location
 D. Inject slowly, in retrograde fashion

9. Which of the following biologic therapies for psoriasis blocks the receptor subunit IL-17RA and carries a black box warning for suicide and suicidal ideation?
 A. Bimekizumab
 B. Brodalumab
 C. Ilekizumab
 D. Secukinumab

10. Certolizumab pegol is:
 A. An antibody fragment without an immunoglobulin G fragment crystallizable (Fc) region
 B. Passed by maternal-fetal transmission in amounts associated with fetal immunosuppression
 C. Conveyed through breast milk in amounts associated with infant immunosuppression
 D. Demonstrated to lose efficacy from week 16 to 48
LEARNING OBJECTIVES: Having completed this activity, you are better able to:

- Assess the safety of tumor necrosis factor inhibitors in the treatment of psoriasis.
- Compare and contrast the interleukin (IL)-17 antagonists used to treat psoriasis.
- Discuss the role and use of topical therapies in the management of psoriasis, including newer therapies.
- Detect adverse events during isotretinoin therapy for acne.
- Evaluate current and emerging therapies for acne and rosacea.
- Describe topical, procedural, and investigational treatments for cellulite.
- Demonstrate familiarity with procedures for safe injection of facial fillers, and preventing and managing vascular occlusion.

If you do not feel confident that you can achieve the above objectives to some extent, please describe why not.

- If you anticipate changing one or more aspects of your practice/professional responsibilities as a result of your participation in this activity, please briefly describe how you plan to do so.

- If you plan to change your practice/professional responsibilities, may we contact you in 2 months to see how you are progressing?
- Yes □ No □ I don’t plan to make a change.

If you are not able to effectively implement what you learned in this activity, please tell us what the system barriers are (eg, institutional systems, lack of resources, etc).

OVERALL EVALUATION

- This education increased my understanding of the subject.
- This education will influence how I do my job.
- This education will help me improve my job performance.
- This education will help me collaborate with other health care professionals.
- This education addressed issues in cultural competency.
- This education was educationally sound and scientifically balanced.
- This education was free of commercial bias or influence.
- This education met my expectations.

<table>
<thead>
<tr>
<th>Hilary E. Baldwin, MD</th>
<th>Author demonstrated current knowledge of the topic.</th>
<th>5 □ 4 □ 3 □ 2 □ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linda F. Stein Gold, MD</td>
<td>Author demonstrated current knowledge of the topic.</td>
<td>5 □ 4 □ 3 □ 2 □ 1</td>
</tr>
<tr>
<td>Kenneth B. Gordon, MD</td>
<td>Author demonstrated current knowledge of the topic.</td>
<td>5 □ 4 □ 3 □ 2 □ 1</td>
</tr>
<tr>
<td>Jeremy B. Green, MD</td>
<td>Author demonstrated current knowledge of the topic.</td>
<td>5 □ 4 □ 3 □ 2 □ 1</td>
</tr>
<tr>
<td>Craig L. Leonard, MD</td>
<td>Author demonstrated current knowledge of the topic.</td>
<td>5 □ 4 □ 3 □ 2 □ 1</td>
</tr>
<tr>
<td>Roberta D. Sengelmann, MD</td>
<td>Author demonstrated current knowledge of the topic.</td>
<td>5 □ 4 □ 3 □ 2 □ 1</td>
</tr>
</tbody>
</table>

What issue(s) are you experiencing in your practice/regarding your professional responsibilities that could be addressed in future programming?

Please provide additional comments pertaining to this activity and any suggestions for improvement.

© 2018 Global Academy for Medical Education, LLC. All Rights Reserved.